Exam Sets & Numbers (PART 2: INTEGERS AND MODULAR ARITHMETIC) November 6th, 2024, 8:30am-10:30am, Exam Hall 4 S1 - Y22.

Write your name on every sheet of paper that you intend to hand in.

Please provide complete arguments for each of your answers.

You may use a simple (not programmable) calculator during the exam.

This exam consists of 3 questions. You can score up to 6 points for each question, and you obtain 2 points for free.

In this way you will score in total between 2 and 20 points.

- (1) In this exercise we let a, b be integers satisfying the property $5 \in \mathbb{Z} \cdot a + \mathbb{Z} \cdot b$.
 - (a) [2 points]. Show that if also $42 \in \mathbb{Z} \cdot a + \mathbb{Z} \cdot b$, then gcd(a, b) = 1.
 - (b) [2 points]. Give an example of such a, b with $42 \notin \mathbb{Z} \cdot a + \mathbb{Z} \cdot b$ (prove that indeed your example has the desired properties!)
 - (c) [2 points]. Show that (a = 1105, b = 2024) provides an example of a pair as discussed here; so $5 \in \mathbb{Z} \cdot 1105 + \mathbb{Z} \cdot 2024$.
- (2) For $k \in \mathbb{Z}_{\geq 1}$ consider the numbers $m_k := -1 + 2^k$. Three weeks ago (October 12th) it was discovered that $m_{136279841}$ is a prime number (the decimal expansion of it has 41024320 digits).
 - (a) [2 points]. Show that if $k|\ell$ for positive integers k, ℓ , then $m_k|m_\ell$.
 - (b) [2 points]. According to wikipedia, the last two decimal digits of $m_{136279841}$ are 51. Prove that this is indeed the case.
 - (c) [2 points]. Prove that if p is any prime number, then it follows that $p|(m_p-1)$.
- (3) This is an exercise about the integer $n = 42^{42}$.
 - (a) [2 points]. Explain why n+1 is not a prime number.
 - (b) [2 points]. Show that 11|(n-4).
 - (c) [2 points]. Suppose that $\bar{x} \in \mathbb{Z}/n\mathbb{Z}$ satisfies $\bar{5} \cdot \bar{x} = \bar{2}$. Prove that $\bar{x} \notin (\mathbb{Z}/n\mathbb{Z})^{\times}$.